lunes, 23 de julio de 2007

Carmichael totient y primitivas

Cálculo de Carmichael y Euler totient:

A primitive root for a prime number p is one whose powers generate all the non-zero integers modulo p. For example, 3 is a primitive root modulo 7 since 3 = 3^1, 2 = 3^2 mod 7, 6 = 3^3 mod 7, 4 = 3^4 mod 7, 5 = 3^5 mod 7, 1 = 3^6 mod 7.

http://home.earthlink.net/~usondermann/eulertot.html

http://math-it.org/Mathematik/Zahlentheorie/Carmichael.html

http://reflections.awesomemath.org/2007_2/carmichael.pdf

http://en.wikipedia.org/wiki/Primitive_root_modulo_n

http://www.brynmawr.edu/math/people/stromquist/numbers/primitive.html

http://www.math.mtu.edu/mathlab/COURSES/holt/dnt/

http://home.comcast.net/~babdulbaki/math/Midys_Theorem.pdf

León-Sotelo

No hay comentarios: