The number of ways in which n may be expressed as a sum of one or more consecutive positive integers is equal to the number of positive odd divisors of n.
50! = 2^47 × 3^22 × 5^12 × 7^8 × 11^4 × 13^3 × 17^2 × 19^2 × 23^2 × 29 × 31 × 37 × 41 × 43 × 47
Divisores impares:23*13*9*5*4*3*3*3*2^6=93.000.960 formas de expresar 50! como suma de enteros consecutivos.
http://www.nzmaths.co.nz/PS/L5/Secondary_Units/consecnumbers.aspx
http://www.nzmaths.co.nz/PS/L5/Algebra/JacksonsCon.aspx
http://mathforum.org/library/drmath/view/55979.html
http://www.uam.es/personal_pdi/ciencias/ehernan/Talento/MercheSanchez/Problema%20numeros.pdf
http://centromatematico.uregina.ca/mp/previous2002/feb03sol.html
http://www.qbyte.org/puzzles/p092s.html
http://nrich.maths.org/public/viewer.php?obj_id=507&part=solution
jueves, 7 de junio de 2007
Suscribirse a:
Enviar comentarios (Atom)
1 comentario:
Recordar el famoso problema de Nick's:
http://www.qbyte.org/puzzles/p092s.html
Publicar un comentario