viernes, 11 de mayo de 2007

Variacion constantes

Sea la ecuación diferencial y'''+my''+ny'+py+q=Q(x)
Haciendo variables con x los parámetros en principio
constantes en la homogénea obtenemos el sistema
que resolvemos por Cramer calculando L',M'yN' que
una vez integradas nos dan L,M y N

L'y(1)+ M'y(2)+N'y(3)=0
L'y'(1)+M'y'(2)+N'y'(3)=0
L'y''(1)+M'y''(2)+N'y''(3)=Q(x)

L,M,N son las tres constantes que acompañan a cada una
de las tres soluciones de la homogénea y que varían al
hacerlas depender de x: L=L(x),M=M(x),N=N(x)

Véase capítulo IV página 113
http://matematicas.udea.edu.co/~jescobar/